Scale®

ВЕСЫ ПЛАТФОРМЕННЫЕ для статического взвешивания «СКЕЙЛ»

ПАСПОРТ и РУКОВОДСТВО по ЭКСПЛУАТАЦИИ

ОГЛАВЛЕНИЕ

1. Назначение и область применения	2
2. Описание	2
3. Технические и метрологические характеристики	3
4. Комплектность средства измерений	4
5. Установка и работа с весами	5
6. Техническое обслуживание	5
7. Консервация и упаковка	5
8. Хранение и транспортировка	6
9. Гарантии изготовителя	6
10. Поверка	6
11. Свидетельство о приемке	7
12. Свидетельство об упаковке	7

Весы платформенные для статического взвешивания типа «СКЕЙЛ».

Выпускаются по ГОСТ OIML R 76-1-2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

1. Назначение и область применения

Весы платформенные для статического взвешивания «СКЕЙЛ» (далее — средство измерений) предназначены для измерений массы.

2. Описание

Принцип действия средства измерений основан на использовании гравитационного притяжения. Сила тяжести объекта измерений вызывает деформацию чувствительного элемента средства измерений, которая преобразуется им в аналоговый электрический сигнал, пропорциональный массе объекта измерений. Этот сигнал подвергается аналогоцифровому преобразованию, математической обработке электронными устройствами средства измерений с дальнейшим определением значения массы объекта измерений. Результаты измерений отображаются в визуальной форме на дисплее.

Средство измерений представляет собой весы неавтоматического действия по ГОСТ OIML R 76–1—2011, имеет модульную конструкцию и состоит из грузоприемного устройства (далее — ГПУ) и весоизмерительного прибора (далее — индикатора).

ГПУ представляет собой металлическую конструкцию в виде платформы для принятия нагрузки, опирающуюся на весоизмерительные датчики одного из следующих типов:

- датчики весоизмерительные тензорезисторные BS, BSA, BSS, BSH, HBS, BCA и BCM (Госреестр № 51261-12), модификации BSA и BSS;
 - датчики весоизмерительные тензорезисторные SQC (Госреестр № 59556-14).

Индикатор — электронное устройство, включающее в себя: аналого-цифровой преобразователь сигнала датчиков, микропроцессор обработки измерительной информации, дисплей для визуального отображения результатов измерений, клавиши управления, а также интерфейсы передачи измерительной информации в виде цифрового электрического сигнала (RS 232C, RS-485, RS-422C):

- приборы весоизмерительные СІ, ВІ, NТ и PDI (Госреестр № 50968-12);
- индикаторы весоизмерительные CI-600A (Госреестр №68370-17);
- индикаторы весоизмерительные СКИ-12 (Госреестр № 58661-14).

Модификации средства измерений отличаются максимальной нагрузкой, особенностями конструкции ГПУ и имеют обозначения вида:

СКЕЙЛ [1][2][3] [4]

Где:

- [1] условное обозначение максимальной нагрузки, т. 0,5; 1; 1,5; 2; 3; 5
- [2] особенности конструкции ГПУ:
- СКП: платформа прямоугольной формы;
- СКТ: низкопрофильная платформа с пандусами;
- СКУ: платформа П-образной формы,
- СКБ: низкопрофильная платформа в виде двух балок для взвешивания паллет;
- [3] материал платформы: (Н): из нержавеющей стали; обозначение отсутствует из конструкционной стали
- [4] Обозначение габаритных размеров платформы (для СКП и СКТ) в формате: ДДШШ, где ДД и ШШ соответственно, длина и ширина грузоприемной платформы в дм.

Программное обеспечение (далее – Π O) средства измерений является встроенным, используется в стационарной (закрепленной) аппаратной части.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014. Идентификационные данные ПО (таблицы 1 и 2) отображаются при включении индикатора весов.

Таблица 1 — Идентификационные данные программного обеспечения

Идентификационные данные	Значение (для индикаторов)				
(признаки)	СКИ-12	CI-5200A	CI-6000A	CI-200A	CI-1560A
Идентификационное наименование ПО				_	
Номер версии	V-1.XX	1.0010;	1.01; 1.02;	1.20; 1.21;	1.00; 1.01;
(идентификационный номер)		1.0020;	1.03	1.22	1.02
ПО *		1.0030			
Цифровой идентификатор ПО				_	

^{* «}х» принимает значения от 0 до 9 и не относится к метрологически значимому ΠO . Номер версии ΠO не ниже указанного

Таблица 2 — Идентификационные данные программного обеспечения

тиолици 2 программиото обеспетения					
И политифиционно по полити	Значение (для индикаторов)				
Идентификационные данные	CI-2001AC	BI-100RB	NT-200A	PDI	CI-600A
(признаки)	CI-2400BS				
Идентификационное					
наименование ПО	_				<u>—</u>
Номер версии	1.00; 1.01;	1.01;1.02;	203; 204;	2.18; 2.19;	1.XX
(идентификационный номер)	1.02	1.03	205	2.20	
ПО *					
Цифровой идентификатор ПО	_				

^{* «}х» принимает значения от 0 до 9 и не относится к метрологически значимому ПО. Номер версии ПО не ниже указанного

Весы снабжены устройствами автоматической и полуавтоматической установки нуля, выборки массы тары, сигнализации о перегрузке весов и диагностики сбоев, возникающих при их работе, и могут выполнять следующие функции:

- выборка массы тары;
- определение массы нетто при взвешивании в таре;
- подсчет количества образцов (в зависимости от комплектации индикатором).

3. Технические и метрологические характеристики

Таблица 3 — Метрологические характеристики

Наимонаранна успантарнатики	Значение			
Наименование характеристики	СКЕЙЛ-0,5	СКЕЙЛ-1	СКЕЙЛ-1,5	
Класс точности по	III			
ГОСТ OIML R 76–1—2011				
Максимальная нагрузка Мах, кг	500	1000	1500	
Поверочный интервал e , действитель-	0,2	0,5	0,5	
ная цена деления (шкалы) d , $e=d$, кг				

Число поверочных интервалов п	2500	2000	3000
Диапазон уравновешивания тары, кг		100 % Max	

Таблица 4 — Метрологические характеристики

Наимоноронно успантаристики	Значение			
Наименование характеристики	СКЕЙЛ-2	СКЕЙЛ-3	СКЕЙЛ-5	
Класс точности по	III			
ГОСТ OIML R 76–1—2011				
Максимальная нагрузка Мах, кг	2000	3000	5000	
Поверочный интервал e , действитель-	1	1	2	
ная цена деления (шкалы) d , $e=d$, кг				
Число поверочных интервалов п	2000	3000	2500	
Диапазон уравновешивания тары, кг	100 % Max			

Таблица 5 — Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
 напряжение переменного тока (номинальное), В 	220
– частота переменного тока, Гц	50±1
Габаритные размеры ГПУ, мм, не более	
– длина	3000
– ширина	3000
Масса ГПУ, кг, не более	230
Условия эксплуатации:	
– температура окружающей среды для ГПУ с датчиками BSA, °C	от -10 до +50
– температура окружающей среды для ГПУ с датчиками BSS, °C	от –40 до +50
 температура окружающей среды для ГПУ с датчиками SQC, °C 	от -30 до +70
– температура окружающей среды для индикаторов, °C	от -10 до +40
– относительная влажность, %	от 0 до 85

Знак утверждения типа

наносится на титульный лист эксплуатационного документа и маркировочную табличку, расположенную на корпусе ГПУ весов.

4. Комплектность средства измерений

Таблица 6 — Комплектность средства измерений

Наименование	Обозначение	Количество
Весы	_	1 шт.
Руководство по эксплуатации	_	1 экз.
Руководство по эксплуатации индикатора	_	1 экз.

5. Установка и работа с весами

- 1. Прежде чем начать работу на весах, ознакомьтесь с руководством по эксплуатации (РЭ) к входящему в комплект поставки весов весоизмерительного прибора (индикатора). Режимы работы, функциональные возможности весов зависят от типа входящего в комплект поставки весов весоизмерительного прибора.
- 2. Установите Грузоприемную платформу весов на ровной горизонтальной поверхности, имеющей твердое недеформируемое (при нагружении платформы весов до НПВ) покрытие.
- 3. Не допускается установка весов в местах с повышенным уровнем вибрации.
- 4. Убедитесь в том, что платформа весов установлена на все четыре установочные опоры. При необходимости отрегулируйте высоту опор.
- 5. Уклон платформы весов в горизонтальной плоскости не должен превышать 2 мм/м. С помощью строительного уровня (длина уровня мин. 80 см.) отрегулируйте положение платформы.
- 6. Зафиксируйте положение установочных опор с помощью арретировочных гаек.
- 7. Подсоедините сигнальный провод от платформы к индикатору согласно схемы, приведенной в РЭ к индикатору. Включите весы.
- 8. Время прогрева при каждом включений весов смотри в РЭ к индикатору.
- 9. При работе с весами не допускается приложение к платформе весов резких динамических нагрузок, ударов по платформе.
- 10. Установка и снятие взвешиваемого груза с платформы весов должна происходить с наибольшей осторожностью, плавно и без резких движений.
- 11. Взвешиваемый груз должен размещаться по центру платформы весов.

6. Техническое обслуживание

- 1. Техническое обслуживание весов состоит из ежесменного осмотра и периодического малого ремонта, выполняемого 1 раз в 12 месяцев.
- 2. При ежесменном осмотре проводят:
- проверку условия установки платформы весов согласно п. 5 «Установка и работа с весами» данного руководства.
- внешний осмотр индикатора с осмотром внешних соединений, целостность изоляции соединительных проводов, в том числе и цепи энергоснабжения индикатора.
- проверку отсутствия под платформой весов грязи и посторонних предметов.
- 3. Ежесменные осмотры могут проводить лица, прошедшие инструктаж по технике безопасности, изучившие РЭ к весам и индикатору.
- 4. При периодическом малом ремонте производятся обязательные регламентные работы, а также работы по устранению дефектов, возникших в процессе эксплуатации.
- 5. Периодический малый ремонт осуществляется предприятием-изготовителем, а также другими организациями, имеющими лицензию на право проведения ремонта СИ.

7. Консервация и упаковка

Консервация производится перед постановкой весов на хранение.

Консервация весов включает в себя очистку поверхностей платформы весов и корпуса индикатора весов от загрязнений и упаковывание.

Перед проведением консервации отсоедините сигнальный провод платформы от индикатора весов

Очистку от загрязнений производите в следующей последовательности:

- очистите от загрязнений поверхность платформы, обезжирьте металлические поверхности;
- очистите от загрязнений корпус индикатора весов.
- упаковывание производите в следующей последовательности:
- упакуйте в бумагу или пленку платформу весов и заклейте упаковку скотч лентой;
- поместите в полиэтиленовый чехол индикатор весов;
- уложите индикатор весов и съемные детали в коробку из гофрированного картона;
- заклейте коробку скотч лентой.

8. Хранение и транспортировка

При хранении и транспортировке весов необходимо соблюдать требования, приведенные ниже. Условия хранения весов должны соответствовать требованиям группы 1 ГОСТ 15150-69

— чистые, отапливаемые, вентилируемые помещения с температурой воздуха от 5 до 40°C и относительной влажностью 80%.

Условия транспортировки весов должны соответствовать требованиям группы 5 ГОСТ 15150-69, но при температурах воздуха от -40 до +50°C.

Весы в транспортной таре предприятия изготовителя могут транспортироваться всеми видами транспорта в крытых транспортных средствах в соответствии с требованиями, действующими в каждом виде транспорта.

Запрещается транспортировать весы в неотапливаемых и разгерметизированных отсеках самолетов.

При транспортировке весов железнодорожным транспортом вид отправки — мелкая, малотоннажная.

9. Гарантия изготовителя

Изготовитель гарантирует соответствие весов требованиям технических условий при соблюдении условий транспортировки, эксплуатации и хранения. Гарантийный срок эксплуатации — 12 месяцев со дня продажи.

Гарантийный ремонт производит предприятие-изготовитель по адресу: 109263, г. Москва, 7-я ул. Текстильщиков, д. 7, корп. 1.

10. Поверка

Поверка осуществляется по ГОСТ OIML R 76–1—2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания», приложение ДА «Методика поверки весов».

Основные средства поверки: гири, соответствующие классу точности M_1 , $M_{1\text{-}2}$ по ГОСТ OIML R 111–1—2009.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью. Знак поверки наносится на свидетельство о поверке средства измерений.